- 1. Part (a): For what values of l and m does the expression $4x^4-12x^3+25x^2-lx+m$ become a complete square, where $x \neq 0$?
- 2. Part (b): When x^4+kx^2+3 is divided by x-2, the remainder is 1. Find the value of k.

Solution for Part (a)

To make $4x^4 - 12x^3 + 25x^2 - lx + m$ a perfect square, we assume that it can be expressed as the square of a quadratic expression:

$$(2x^2 + ax + b)^2$$

Expanding $(2x^2 + ax + b)^2$ gives:

$$4x^4 + 4ax^3 + (a^2 + 4b)x^2 + 2abx + b^2$$

Now, we compare this with $4x^4-12x^3+25x^2-lx+m$ and match coefficients for each power of x:

1. Coefficient of
$$x^3$$
: $4a=-12 \Rightarrow a=-3$.

- 2. Coefficient of x^2 : $a^2+4b=$ $25\Rightarrow (-3)^2+4b=25\Rightarrow 9+$ $4b=25\Rightarrow 4b=16\Rightarrow b=4.$
- 3. Coefficient of x: $2ab = -l \Rightarrow$ $2(-3)(4) = -l \Rightarrow -24 =$ $-l \Rightarrow l = 24$
- 4. Constant term: $b^2 = m \Rightarrow 4^2 = m \Rightarrow m \Rightarrow 16$.

Thus, the values of l and m are:

$$l = 24$$
 and $m = 16$

Solution for Part (b)

To find the value of k such that the remainder is 1 when x^4+kx^2+3 is divided by x-2:

- 1. Using the **Remainder Theorem**, substitute x=2 into the polynomial $f(x) \Rightarrow x^4 + kx^2 + 3$.
- 2. We have:

$$f(2) = 2^4 + k \cdot 2^2 + 3 = 16 + 4k + 4k$$

3. Set the remainder equal to 1:

$$19 + 4k = 1 \Rightarrow 4k = -18 \Rightarrow k = -18$$

So, the value of k is:

$$k=-rac{9}{2}$$

Q.2

(a) Factorize the expression:

$$x^3p^2-8y^3p^2-4x^3q^2+32y^3q^2$$

(b) A man is currently 5 times as old as his son. Four years ago, the product of their ages was 52. Find their present ages.

Part (a)

We are asked to factorize the expression:

$$x^3p^2 - 8y^3p^2 - 4x^3q^2 + 32y^3q^2$$

To factor this expression, we can look for common factors in pairs of terms and then apply factoring techniques like grouping.

1. Group the terms:

$$(x^3p^2-4x^3q^2)-(8y^3p^2-32y^3q^2)$$

Factor out common factors in each group:

$$x^3(p^2-4q^2)-8y^3(p^2-4q^2)$$

4. Now factor out (p+2q)(p-2q):

$$(x^3 - 8y^3)(p + 2q)(p - 2q)$$

5. Recognize that $x^3 - 8y^3$ is a difference of cubes, which factors as:

$$(x^3 - 8y^3 = (x - 2y)(x^2 + 2xy + 4y^2)$$

Substitute this back:

$$(x-2y)(x^2+2xy+4y^2)(p+2q)(p-2q)$$

Thus, the factorization is:

$$(x-2y)(x^2+2xy+4y^2)(p+2q)(p-2q)$$

Part (b)

We are given that a man is currently 5 times as old as his son. Four years ago, the product of their ages was 52. We need to find their present ages.

- 1. Let the son's current age be x. Then the man's current age is 5x.
- 2. Four years ago:
 - The son's age was x-4.
 - ullet The man's age was 5x-4.
- 3. According to the problem, four years ago, the product of their ages was 52:

$$(x-4)(5x-4) = 52$$

4. Expand and solve for x:

$$5x^2 - 4x - 20x + 16 = 52$$
 $5x^2 - 24x + 16 = 52$ $5x^2 - 24x - 36 = 0$

Now, solve this quadratic equation using the quadratic formula:

$$x = rac{-(-24) \pm \sqrt{(-24)^2 - 4 \cdot 5 \cdot (-36)}}{2 \cdot 5}$$
 $x = rac{24 \pm \sqrt{576 + 720}}{10}$ $x = rac{24 \pm \sqrt{1296}}{10}$

$$x=rac{24\pm36}{10}$$

This gives two solutions:

$$x = rac{24 + 36}{10} = 6$$
 or $x = rac{24 - 36}{10} = -1.5$

Since age cannot be negative, x=6.

7. Therefore:

- The son's current age is 6.
- The man's current age is 5 imes 6 = 30.

Answer: The present ages are:

- Son: 6 years
- Man: 30 years

Q.3

(a) Solve and graph the inequality:

$$\frac{3x+4}{5} - \frac{x+1}{3} > 1 - \frac{x+5}{3}$$

(b) Find the value of $a^2+b^2+c^2$ given that ab+bc+ca=11 and a+b+c

Part (a)

We are given the inequality:

$$\frac{3x+4}{5} - \frac{x+1}{3} > 1 - \frac{x+5}{3}$$

 Clear the Fractions: Multiply every term by 15 (the least common multiple of 5 and 3) to eliminate the denominators:

$$15 \cdot \frac{3x + 4}{5} - 15 \cdot \frac{x + 1}{3} > 15 \cdot 1 - 15$$

2. Simplify each term:

$$3(3x+4) - 5(x+1) > 15 - 5(x+1)$$

$$9x + 12 - 5x - 5 > 15 - 5x - 25$$

3. Combine like terms:

$$4x + 7 > -10 - 5x$$

4. Move all terms involving x to one side and constants to the other:

$$4x + 5x > -10 - 7$$

$$9x > -17$$

5. Divide by 9:

$$x > -rac{17}{9}$$

6. Graph the Solution:

- On a number line, mark $x=-rac{17}{9}$.
- Since $x>-\frac{17}{9}$, shade the region to the right of $-\frac{17}{9}$ and use an open circle at $-\frac{17}{9}$ (indicating that it's not included in the solution).

Part (b)

We need to find the value of $a^2+b^2+c^2$ given:

1.
$$ab + bc + ca = 11$$

2.
$$a + b + c = 6$$

3. Square the Sum $(a + b + c)^2$:

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + c^2)$$

4. Substitute the known values:

$$6^2 = a^2 + b^2 + c^2 + 2 \cdot 11$$

$$36 = a^2 + b^2 + c^2 + 22$$

5. Solve for $a^2 + b^2 + c^2$:

$$a^2 + b^2 + c^2 = 36 - 22$$

$$a^2 + b^2 + c^2 = 14$$

$$a^2 + b^2 + c^2 = 14$$

Q4

(a) Solve
$$\sqrt{3x-2}-\sqrt{x}=2$$
.

To solve, isolate the square roots and square both sides to eliminate them, then solve the resulting equation.

(b) Simplify the expression:

$$rac{x^4-y^4}{x^2-2xy+y^2} imes rac{x-y}{x(x+y)} + rac{x^2+y^2}{x}.$$

Factor and cancel common terms where possible, and then simplify each part.

Q4 (a)

Problem: Solve $\sqrt{3x-2}-\sqrt{x}=2$.

Solution:

1. Isolate one of the square roots:

$$\sqrt{3x-2} = \sqrt{x}+2$$

2. Square both sides to eliminate the square root:

$$3x-2=(\sqrt{x}+2)^2$$

Expand the right side:

$$3x - 2 = x + 4\sqrt{x} + 4$$

4. Move all terms involving x to one side:

$$2x - 6 = 4\sqrt{x}$$

5. Isolate the square root term:

$$\frac{2x-6}{4} = \sqrt{x}$$

Simplify this:

$$\frac{x-3}{2} = \sqrt{x}$$

6. Square both sides again to eliminate the square root:

$$\left(\frac{x-3}{2}\right)^2 = x$$

7. Expand and simplify:

$$\frac{(x-3)^2}{4} = x$$

Multiply both sides by 4 to clear the denominator:

$$(x-3)^2 = 4x$$

8. Expand $(x-3)^2$:

$$x^2 - 6x + 9 = 4x$$

Bring all terms to one side to set up a quadratic equation:

$$x^2 - 10x + 9 = 0$$

10. Solve the quadratic equation using the quadratic formula:

$$x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1}$$

$$x=\frac{10\pm\sqrt{100-36}}{2}$$

$$x = \frac{10 \pm \sqrt{64}}{2}$$

$$x=rac{10\pm 8}{2}$$

So,
$$x = \frac{10+8}{2} = 9$$
 or $x = \frac{10-8}{2} = 1$.

- 11. Check both solutions in the original equation to ensure they don't produce extraneous roots:
 - For x = 9:

$$\sqrt{3\cdot 9-2}-\sqrt{9}=\sqrt{27-2}-3=$$

So x=9 is a solution.

• For x = 9:

$$\sqrt{3\cdot 9-2}-\sqrt{9}=\sqrt{27-2}-3=$$

So x=9 is a solution

• For x=1:

$$\sqrt{3 \cdot 1 - 2}$$
 $\sqrt{1} = \sqrt{3 - 2} - 1 =$

This does not satisfy the original equation, so x=1 is an extraneous solution.

Final Answer:

$$x = 9$$

Q4 (b)

Problem: Simplify

$$rac{x^4 - y^4}{x^2 - 2xy + y^2} imes rac{x - y}{x(x + y)} + rac{x^2 + y^2}{x}.$$

Let's go through it step-by-step.

Step 1: Simplify
$$\frac{x^4-y^4}{x^2-2xy+y^2}$$

1. Notice that $x^4 + y^4$ is a difference of squares:

$$x^4 - y^4 = (x^2 + y^2)(x^2 - y^2).$$

2. The term $x^2 - y^2$ is also a difference of squares:

$$x^2 - y^2 = (x - y)(x + y).$$

So,

$$x^4 - y^4 = (x^2 + y^2)(x - y)(x + y).$$

3. Now, let's rewrite the denominator

$$x^2 - 2xy + y^2$$
:

$$x^2 - 2xy + y^2 = (x - y)^2$$
.

4. Substitute these factored forms back into the expression:

$$rac{x^4-y^4}{x^2-2xy+y^2}=rac{(x^2+y^2)(x-y)(x}{(x-y)^2}$$

5. Cancel one (x-y) term from the numerator and denominator:

$$=\frac{(x^2+y^2)(x+y)}{x-y}.$$

Now the expression becomes:

$$rac{(x^2+y^2)(x+y)}{x-y} imesrac{x-y}{x(x+y)}+rac{x^2+y^2}{x}.$$

Step 2: Simplify the Multiplication

1. Notice that (x-y) in the numerator and denominator cancel out:

$$=rac{(x^2+y^2)(x+y)}{x(x+y)}.$$

2. Now, cancel (x + y) from the numerator and denominator:

$$=rac{x^2+y^2}{x}.$$

Now, the expression becomes:

$$\frac{x^2+y^2}{x}+\frac{x^2+y^2}{x}.$$

Step 3: Combine Like Terms

Since both terms are the same, we can add them:

$$=\frac{2(x^2+y^2)}{x}.$$

Final Answer:

$$rac{2(x^2+y^2)}{x}$$
 .

Q.5 (a) Solve (x+1)(x+2)+(x-5)(x+8)=6 by using the quadratic formula.

(b) Product of two expressions is $x^4+3x^3-12x^2-20x+48$ and their LCM is $x^3+5x^2-2x-24$. Find their HCF.

Q5 (a)

Problem: Solve (x+1)(x+2)+(x-5)(x+8)=6 using the quadratic formula.

Solution:

1. Expand both products:

$$(x+1)(x+2) = x^2 + 2x + x + 2 = x^2$$

 $(x-5)(x+8) = x^2 + 8x - 5x - 40 =$

Substitute these expressions back into the equation:

$$(x^2 + 3x + 2) + (x^2 + 3x - 40) = 6.$$

3. Combine like terms:

$$2x^2 + 6x - 38 = 6.$$

4. Move all terms to one side of the equation:

$$2x^2 + 6x - 38 - 6 = 0.$$

$$2x^2 + 6x - 44 = 0.$$

5. Simplify the equation by dividing every term by 2:

$$x^2 + 3x - 22 = 0.$$

6. **Use the quadratic formula** to solve for x:

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a},$$

where a=1, b=3, and c=-22.

where a=1, b=3, and c=-22.

Substitute the values into the formula:

$$x = rac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-22)}}{2 \cdot 1}$$
 $x = rac{-3 \pm \sqrt{9 + 88}}{2}$.

$$x = \frac{3 \pm \sqrt{97}}{2}.$$

Final Answer

$$x = \frac{-3 + \sqrt{97}}{2}$$
 or $x = \frac{-3 - \sqrt{97}}{2}$.

Q5 (b)

Problem: The product of two expressions is

$$x^4 + 3x^3 - 12x^2 - 20x + 48$$

and their LCM is

$$x^3 + 5x^2 - 2x - 24$$
.

Find their HCF.

Solution:

1. Recall the relationship between the product, LCM, and HCF: For two expressions A and B:

$$A \times B = LCM(A, B) \times HCF(A, B).$$

In this case:

$$x^4 + 3x^3 - 12x^2 - 20x + 48 = (x^3 + 5x^3)$$

2. Divide the product by the LCM to find the HCF: We need to perform polynomial division:

$$rac{x^4+3x^3-12x^2-20x+48}{x^3+5x^2-2x-24}.$$

- 3. Perform the polynomial division:
 - Step 1: Divide the leading term of the numerator by the leading term of the denominator:

$$rac{x^4}{x^3}=x.$$

Step 2: Multiply x by the entire denominator:

$$x \cdot (x^3 + 5x^2 - 2x - 24) = x^4 + 5x^3 - 2x^2$$

Step 3: Subtract this result from the original polynomial:

$$(x^4 + 3x^3 - 12x^2 - 20x + 48) - (x^4 + 5x^3)$$

Step 4: Repeat the process with the new polynomial

$$-2x^3 - 10x^2 + 4x + 48$$
:

$$\frac{-2x^3}{x^3} = -2.$$

Step 5: Multiply -2 by the entire denominator:

$$-2 \cdot (x^3 + 5x^2 - 2x - 24) = -2x^3 - 10x^2$$

 Step 6: Subtract this result from the current polynomial:

$$(-2x^3-10x^2+4x+48)-(-2x^3-10x^2+4x^2+48)$$

Since the remainder is zero, the division is exact, and the HCF is the quotient we obtained.

Final Answer:

$$HCF = x - 2$$
.